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A technique for suppressing the finite-grid instability in plasma
simulation by jiggling the computation mesh is revisited. Linear disper-
sion theory suggests a reduction in growth rate of 50 % when the mesh
is randomly jiggled. With an implicit method, a large time step, and a
grid with variable spacing, a nearly complste absence of the instability
is observed. Because of its simplicity and low cost, it is suggested the
method can be used routinely with variable zoning or adaptive grids to
suppress the finite-grid instabifity,  © 1994 Academic Press, inc.

INTRODUCTION

For more than 20 years, it has been known that particle-
in-cell (PIC) plasma simulations are unstable due to
aliasing errors [ 1, 2]. This instability, called the finite-grid
instability, also occurs in PIC fluid models [3] and is due
to undersampling of the particle data in the calculation of
interaction among the particles on the grid. The instability
can cause rapid, unphysical heating of the plasma and,
consequently, large errors in ¢nergy conservation.

The instability is a very serious problem for PIC, yet there
are many successful simulations with no evidence of
its appearance. Knowledgeable researchers have chosen
probiem parameters to avoid the instability, they have used
higher-order interpolation, and they have smoothed the
data and interiaced or jiggled grids to reduce its growth rate
[4, 5]. Further, they have been quick to recognize and dis-
card those calculations where the instability has caused
large errors. In implicit methods, where the time step is very
large compared with the plasma frequency, the growth rate
for the instability is less, but the instability still imposes
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a weak constraint on the minimum time step that can be
used [6].

The finite-grid instability becomes more than an
annoyance when one considers multiple-length scale
problems. For example, one may have a collisionless shock
with very strong gradients embedded in a more-or-less
uniform plasma. Clearly, in such cases there is an advantage
to concentrating grid points in the region of strong
gradients using variable zoning. On a nonuniform grid, it
can be impossible to use a single time step everywhere in the
domain and satisfy the condition for stability. Precisely this
situation is illustrated by the variable grid calculation of a
slow shock shown below. To address the problem of the
finite-grid instability on a variable grid, we re-examine a
technique suggested by Chen [4] for suppressing the
instability, a “jiggled” grid. Here we report very positive
results with a jiggled grid. The differences between our
technique and that described by Chen [4] are explained, a
stability analysis is presented, and comparisons between
slow shock calculations with and without jiggling the mesh
are presented.

FINITE-GRID INSTABILITY ON AN IRREGULAR MESH

We consider the finite-grid instability on a mesh with
nodes located at
xj=jdx+dx,  je[l,J], (1)
where dx; can be different for every j. For simplicity, we
consider a continuous number density, #(x), and a mollified
number density 7i{x), calculated by convolving n(x) with a
“shape” function, S(x),

A(x) =j dx’ n(x') S(x—x'). )
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We assume S is positive with bounded support and that it
satisfies the integrability condition. The Fourier transform
of 7i(x) is given by

N(k) = N(k) S(k), (3)

where N(k) and S(k) are the Fouriér transforms of n(x) and
S(x), respectively.

The finite-grid instability is caused by aliases. Aliases
arise when we evaluate the inverse transform at the mesh
points,

=" % Fikyens )
—ep W
To evaluate 7, first define &, by
_ _[—= =
=k _~
ky=k+Ik,, ke[dx,_dx], (5)

where k,=2n/4x is the first harmonic of the shortest
wavelength mode resolved by a uniform mesh with spacing
4x, and k is the principal wave number. It follows that

eikfj Ax eiEj 4x

{6)
With these definitions, the inverse transform can be written

"/dx i foed
ﬁeiﬁj Ax Z N(k,) ea‘k;éxj‘ (7)
—n/dx n

Ax) = |

I=—w

In this inverse transform, each alias, — w0 < /< o0, is multi-
plied by a complex phase factor due to the irregular spacing.

One can construct an ensembie of meshes, each with a dif-
ferent set of displacements, dx;, according to a probability
distribution P(dx). The average of the results with many sets
of displacements is given by '

(A= f P(dx,) Fiy(8x,) d(3x,). (8)

A particularly interesting probability function from the
viewpoint of computation is one that gives a uniform
distribution on the interval —A4<d< 4. The result of
an ensembie average of Eq. (7) with a uniform probability
distribution is

B #fdx d]z i o oo _ A A
(nj> =J._u/Ax2—7:edqd Z N(k‘v) dlf(k,-i), {9)

I= -0

where the diffraction function is defined by

a(s)eon (s (-)

(10)

When one jiggles the mesh randomly, the average result is
to multiply each alias by the diffraction function. Next, the
effect of this factor is examined by evaluating the linear
dispersion for various values of 4.

One notes one small difference between the jiggling
described by Chen ef al. [4] and the algorithm described
above. Chen proposed displacing each grid point the same
distance so that the displaced grid also had uniform spacing.
The jiggling described above will result in nonuniform
spacing. Thus, it requires appropriate differencing for
nonuniform meshes, but it also extends the approach to
aperiodic domains.

LINEAR DISPERSION OF THE
YLASOV-POISSON SYSTEM

Consider the solution of the linearized Vlasov—Poisson
equations in one dimension, written

o, o

0fo
g Po 11
o T (1)
ay==E,, {12)

OE
a—xl=47rqnt, (13)

and

m={" fids m=|fodb. (14)

The distribution function, f(x, v) gives the number of
particles in an element of phase-space (dx, dv) at (x, v).
The zero-order distribution is uniform and stationary:

of _ofy
—=—==0. 15
x &t 0 (13)
Consider a time-centered, implicit discretization of Eq. (11)
written

ity e Lk
ot +v P + af E_O’ (16)
where ,
ST =S+ di), Sr=fln. (17)

(This implicit formulation is approximated by the implicit-
moment and direct-implicit methods [7, 8].) If one assumes
the time and space dependence,

filx, v, )=~ " "EIF, (v), (18)
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one can write Eq. {16} as

0fc

—i{R-kv) Fy (y+ Ak @_uoz

0,

where £2 is given by

At w At
2 E‘ =tan (—-'2—)

and A4, ,, is the Fourier transform of the acceleration,

q dng
Ay =— S(k)-——
&k, ar m S( ) lk

One can integrate Eq. (19) over v and factor N, to derive the
dispersion relation,

S(k,) dif(k, 4/2) { (8f4/0v) dv
= 2 L] 22
0 1+wL§1; ek © %) (22)
where
2
ﬁ:%’i’——. (23)

As noted by many authors, the additional resonances,
contributed by the aliases, +fe1, wo], are the cause of
the finite-grid instabiiity,

A particularly simple case is that of a cold beam moving

with velocity v, through a fixed, charge neutralizing back-
ground,

(24)
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The dispersion relation, Eq. {22), reduces to

E0/-55)

The dispersion is evaluated numerically with linear inter-
polation, for which S(%) is given by

Sth) = (dif (k %5))2,

and the results are shown in Figs. 1-3. For reference the
imaginary part of the frequency for a case with w, 471=0.2
and without jiggling is shown in Fig. 1. For beam vetocities
less than ~0.2w, 4x, there are exponentially growing

0

=0~ Y wlSYk,)di

T

(26)

7 (.04

2.0

b

gummu
a.02

g.00 .01

FIGURE 3

79



80 BRACKBILL AND LAPENTA

solutions with growth times, @, ? ~ 12-16. When the mesh is
jiggled with 4=0.35, Fig. 2, the region of instability is
testricted to a smaller range of velocities, v, <0.15w, Ax,
to shorter wavelengths, and to longer growth times,
w, t~16-25. When the mesh is jiggled with 4 =1, Fig. 3,
the instability is restricted to a narrow band of wave
numbers for a given velocity. One notes that one can
evaluate Eq. (25) with the contributions of one or two
aliases included, —nu</<n, where n=1,2 etc. Such
experiments indicate that the band of greatest instability can
be associated with the coniribution from the first alias,
{= 4+ 1. A comparison of Figs. | and 3 suggests that jiggling
can suppress the first alias completely.

COLD BEAM: NUMERICAL EXPERIMENTS

Nonlinear solutions of the cold-beam problem are
generated with CELESTID, an implicit-moment simula-
tion code for plasmas in one dimension [%]. Only electro-
static interactions are included. The calculation is similar to
that reported by Chen et al,, with 32 cells, 64 particles per
cell, and a cold beam with r;=032w, 4x. However, a
larger time step is used, w, 4¢ =1, but it is not so large that
there should be significant differences from the earlier
results.

A plot of the beam is shown in Fig. 4 for «, t=400. The
finite grid instability has caused a large amplitude modula-
tion of the particle velocity and, as shown in Fig. 5, a large
increase in the thermal energy of the beam, (v - v3)*). The
maximum value is nearly 5% of the initial beam energy.

We next jiggie the mesh. Instead of jiggling the mesh and
averaging the results for a single time step, a random dis-
placement is imposed once each time step. When there are
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high correlations from time step to time step, time averaging
over several time steps is eguivalent to ensemble averaging
in a single time step. Time and ensemble averages arc only
approximately equivalent, and the approximation is less
likely to be accurate in the beam case, where the instability
growth time is only several time steps.

With jiggling and 4 = 0.8, the results are shown in Figs. 6
and 7. There is some modulation in the beam velocity,
Fig. 6, but much smaller than without jiggling. There is also
some increase in the thermal energy, Fig. 7, but this time it
is to a maximum that is less than 1% of the initial beam
energy. Abe estimates that the energy increase due to the
instability should scaie as the square of the growth rate
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[10]. Thus, it appears that jiggling has halved the growth
rate of the instability, which is cousistent witk the linear
dispersion resulis above.

To summarize, these results seem entirely consistent with
those presented earlier by Chen e af. [4] and Birdsall and
Maron [57]. One difference not shown is that the decrease in
growth rate with dx,, selected independently for each j, is
greater than with dx;=const, je[1, N]. As observed

earlier, jiggling reduces the growth rate but does not
suppress the instability,

FINITE TIME STEPS

Several studies have investigated the effect of large time
steps on the plasma dispersion, e.g., Brackbill and Forslund
[71. The effect of discretization in time is to limit the maxi-
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mum representable frequency to the Nyquist frequency,
@y =mn/dt. Thus, as 4¢ increases, the value of the plasma
frequency decreases with increasing 41, As shown earlier, so
does the growth rate of the finite grid instability. As a result,
implicit calculations with w; 41> 1 and A,/4x < 1, where
4p is the Debye length, A, = vy /®,, are stable. For
example, in calculations of the colisionless slow shock,
stable solutions are obtained with 1,/4x=2.5x10% and
@y At =250 (Dyperma A/Ax =T x 1072),

Results with &, 4r=0.2 and nearest-grid-point (NGP)
interpolation, Fig. 8, can be compared with those for
w; At=4, Fig. 9. The increase in the time step haives the
maximum growth rate, When «, 4t=4 and the mesh is
jiggled with 4 =1, Fig. 10, the maximum growth rate is
halved again. Thus, the stabilizing effect of large time steps
and jiggling is additive.
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COLLISIONLESS SLOW-SHOCK

In the slow-shock calculations, a magnetized plasma
is injected at the left boundary and reflects at the right
boundary. The upstream flow conditions and the
downstream boundary conditions produce a switch-off
slow-shock that propagates upstream with a constant
velocity. Behind the shock, there is a circularly polarized
wave, which has been called a trailing magnetic wave
(TMW) [11]. There are several papers on the slow-shock,
including one on a calculation with kinetic electrons as is
considered here [121.

Because of the absence of interesting features in the
upstream regions, it sgems reasonable that an adaptive grid
with small zones only in the shock would be more efficient
computationally. Efficiency is not an academic issue, even in
one dimension, because the simulations have required as
much as 4 h of CRAY computer time to perform.

When a calculation is performed on a uniform grid with
400 cells, A, /Ax =2.5x10~*% w,, At =50, and 256 electron
and 64 ion particles per cell initially, there is no instability.
However, there is an instability when an adaptive grid 1s
used. With 260 cells, and a mesh varying in size from
4x10%,€A4<1.28 %1032, the grid spacing is plotted in
Fig. 11. The stack plot, Fig. 12, plots profiles of the
z-component of the magnetic field at intervals of w, ;¢ = 100
from t=0 to w,, At = 5000, where w,, /w;;, the ratio of
electron to ion plasma frequency is 5. In the stack plot, one
can identify the steady progression of the shock to the left
and the TMW behind. One can also see very large
amplitude waves upstream. These have no physical cause
and are evidence of the growth of the finite-gnid instability.
In the hodogram, Fig. {3, in which By is plotted against Bz
as a point moves from left to right, the TMW is identifiable
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as the spiral portion of the curve. The large amplitude waves
upstream appear chaotic, with random changes in phase
from point to point.

Using the mesh shown in Fig. 11, with )iggling, produces
the results shown in Figs. 14 and 15. The hodegram in
Fig. 15 is especially useful in judging the amplitude of the
upstream waves, because the amplitude of the TMW is the
same as in Fig. 13. The amplitude of the upstream waves is
negligible with jiggling. In this case, which is typical of the
problems one would like to do, jiggling is effective in
reducing the effect of finite-grid instability and results in a
30 % reduction in the cost of the calcufation.

Another aspect of the effect of jiggling is shown in Figs.
16-17. In Fig. 16, the total kinetic energy without jiggling
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grows rapidly to eight times its initial value from w, 1=
4 x 107 until the end of the calculation. There are pauses, but
the growth appears to occur in a single episode. In Fig, 17,
the total kinetic encrgy with jiggling increases by 40%
between w,.r=23.8x10* and w,,t=4.3x 10*. Thereafter,
the energy increases at an average rate that appears to be
linear in time. Evidently, the instability is not eliminated by
jiggling, but its growth rate and saturation amplitude are
reduced substantially.

The grid, Fig. 11, has very large zones near the left
boundary. There 4=0.25 and, on the time step shown,
there is a large variation in zone size from cell to cell. In the
vicinity of the shock, x = 140¢/w,;, the grid is not jiggled at
all. The mesh spacing is already sufficiently small so that the
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instability does not occur and there is no need to do any-
thing further. One can imagine the decision to jiggle or not
could be based on the value of 1,,/4x, but the critical value
depends upon the time step and the distribution function as
expressed by a dispersion relation similar to Eq. (22). Thus,
the estimate of the critical value would itself requirc a
numerical solution of the dispersion equation.

The caiculation shown in Figs. 11-15 requires the solu-
tion of the electromagnetic equations. As is well known, the
solution of these equations requires that one store a pre-
vious value of the vector potential at each grid point [9].
When the mesh is jiggled, these stored values must be inter-
polated to the new grid. In the case shown in Figs. 14-15,
the interpolation used is a cubic spline routine [13]. In two
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or three dimensions, this is not possible to use. Calculations
with linear interpolation were observed to have e¢nough
numerical diffusion to eliminate the TMW, so that whatever
technique is used should be O(4x?). Of course, interpola-
tion introduces diffusion each time step with diffusivity
O{Ax"/Ar). For convergence as A¢—0, Ax must also
decrease so that the diffusivity remains bounded.

CONCLUSION

A technique for suppressing the finite-grid instability
suggested by Chen et al. is revisited [47]. It is found that
jiggling the mesh is very effective in suppressing the
instability in collisionless shock calculations on a grid with
wide variations in cell size.

That it should be successful in reducing the growth rate is
suggested by dispersion analysis, but it is not explained by
it. There is no theory for the instability in electromagnetic
plasma simulation, and so it is not known whether there is
an electromagnetic branch to the instability. Evidently,
there is coupling to the magnetic field because of the large
amplitude variations in the field. Other diagnostics, not
shown, indicate the principal effect of the instability is
plasma heating just as in the electrostatic case and that
coupling to the magnetic ficld occurs as a side effect of the
change in plasma properties.

Finally, a key assumption of the technigue is the
equivalence of ensemble and time averaging. Numerical
experiments suggest that, if there is sufficient correlation in

the particle data over several time steps, the technique
works as the analysis predicts. Furthermore, the cost of
jiggling the grid, if one is already using a variable-spaced
grid, is negligible.
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